Zn-Doped Fe₃O₄ Nanosheet Formation Induced by EDA with High Magnetization and an Investigation of the Formation Mechanism

Jie Zhu and Zhaodong Nan

College of Chemistry and Chemical Engineering, Yang Zhou University, 225002 Yangzhou, People’s Republic of China

Supporting Information

ABSTRACT: Ethylenediamine (EDA) was always used as an additive to modify nanomaterial formation. However, the effect of EDA on the nanomaterial formation process has not been studied in detail. In the present study, Zn-doped Fe₃O₄ magnetic nanosheets with a high magnetization and surface area were synthesized by a facile one-step solvothermal method, where EDA was added to the reaction system. The formation mechanism was first studied in detail by using an in situ calorimetric method. Compared to Zn-doped Fe₃O₄ clusters synthesized by the same method without EDA, the complex formation, as [Fe(EDA)]₃³⁺ and [Zn(EDA)]₂²⁺, prevented alkoxide (Fe₂(C₂H₄O₂)₃ and ZnC₂H₄O₂) formation and resulted in some reactions occurring at higher temperature. At the same time, the (111) facets of Zn-doped Fe₃O₄ became stable, which resulted in nanosheet formation. And the effect of EDA on the magnetization of the sample can be explained by the Zn²⁺ distributions at the tetrahedral (A site) and octahedral (B site) sites. These results demonstrated further that the EDA can change the Zn-doped Fe₃O₄ formation mechanism, which has not been reported before as we know.

INTRODUCTION

Magnetic nanoparticles have received increasing attention in past decades. Among these magnetic nanoparticles, ferrite magnetic nanoparticles have been extensively investigated owing to their wide use in different fields,¹–⁵ in which the fabrication of monodisperse nanoparticles with high magnetization and surface area simultaneously is critical for the application.⁶ Nanosized magnetic materials usually show a low magnetization value because of small particles, which limits their practical applications. The magnetization can be enhanced through increasing particle size,⁷,⁸ which usually induces a superparamagnetic–ferrimagnetic transition.

Zinc is one of the commonly used metal dopants into Fe₃O₄ because of its nonmagnetic property. Zn ferrite is an important spinel ferrite with excellent physical properties, and its properties are crucially determined by the size, morphology, and cation distribution.⁹ A series of Zn ferrite nanoparticles were synthesized by using a chemical coprecipitated technique in which Zn₀.₂Fe₂.₈O₄ showed a maximum saturation magnetization of 80.93 emu/g.¹⁰

EDA has been considered to be one of the additives to modify the morphology and magnetic property of ferrites. The fabrication of functional nanoparticles with controllable size and shape is of great importance for their fundamental scientific significance and broad technological applications.¹¹,¹² Ding et al. successfully synthesized Fe₃O₄ nanorods using EDA, which exhibited ferromagnetic behavior at room temperature with a magnetic saturation value of 72.94 emu/g.¹³ Hollow spheres of Fe₃O₄ were synthesized with EDA, which show a high saturation magnetization of ca. 68 emu/g.¹⁴ The action of EDA was always reported as similar to that of a surfactant to stable nucleation and some facets of samples. However, no result has not been reported on how to change the material formation mechanism with EDA in detail as far as we know.

In our previous experiment, a series of Zn-doped ferrites was synthesized with cluster-shaped morphology to enhance the magnetization.¹⁵–¹⁷ In the present study, EDA was added to the reaction systems. Compared to the Zn-doped Fe₂O₄ synthesized without EDA, the morphology of the as-prepared sample changed significantly from cluster to monodispersed nanosheets, and the magnetization was obviously enhanced. At the same time, the as-prepared sample had a higher BET surface area (80.6 m²/g), which can be widely used in different fields. Thus, it is very interesting to study ferrite formation with EDA. The formation mechanism of the nanosheet-shaped ferrite was studied in detail by in situ calorimetry. The results demonstrated that EDA induced the (111) facet of the sample to be stable and significantly changed the Zn-doped Fe₃O₄ magnetic nanosheet formation mechanism.

EXPERIMENTAL SECTION

Materials. All chemicals in this work, such as ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), ethylene glycol (C₂H₄O₂), sodium eth-
oxide (C\textsubscript{4}H\textsubscript{4}ONa), and ethylenediamine (C\textsubscript{2}H\textsubscript{4}N\textsubscript{2}), were analytical-grade reagents from the Sinopharm Chemical Reagent Company and were used as starting materials without further purification.

Synthesis of Zn-Doped Fe\textsubscript{3}O\textsubscript{4} Magnetic Nanosheets. In a typical experiment, 0.60 mmol of Zn(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O and 8.4 mmol of (Fe(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O) were dissolved in 25 mL of anhydrous ethylene glycol, for which the molar ratio of Zn2+ to Fe3+ was 1/14. Then, 9.0 mmol of CH\textsubscript{3}COONa was added to the solution. The whole mixture was stirred vigorously to give a homogeneous solution, followed by the addition of ethylenediamine (EDA) in different molar amounts. Subsequently, the solution was transferred to a 50 mL Teflon-lined stainless steel autoclave, which was thermally treated for 24 h at 200 °C and then naturally cooled to room temperature. The final product was obtained by washing the precipitate a few times with distilled water and ethanol before being dried in a vacuum oven at 50 °C for 24 h. Different samples named E5, E8, E10, E15, and E20 were synthesized with 45, 72, 90, 135, and 180 mmol of EDA, respectively, in which 5, 8, 10, 15, and 20 represent the molar ratio of EDA to metal ions (9.0 mmol of Zn2+ and Fe3+).

Characterization. X-ray powder diffraction (XRD) measurements were performed on a Bruker D8 Advance X-ray diffractometer with Cu Ka radiation (\(\lambda = 1.5418 \text{ Å}\)). The 2\(\theta\) range used in the measurement was from 10 to 80°. Standard and high-resolution transmission electron microscopy (TEM and HRTEM) measurements were performed on a JEOL-2010 TEM at an acceleration voltage of 200 kV. Samples were first ultrasonically dispersed in absolute alcohol and dropcast onto copper grids. Infrared spectrum (FT-IR) measurements were performed on a Nicolet Aexus 470, with scanning from 4000 to 400 cm-1 by using KBr pellets under ambient temperature. The metal ion concentration was measured by inductively coupled plasma–atomic emission spectroscopy (ICP–AES) on an Optima 7300 DV (PerkinElmer). The chemical composition of the sample was determined by the dissolution of 0.2200 g of the sample in 10 mL of 28 wt % HCl solution, followed by diluting it to 1000 mL. X-ray photoelectron spectroscopy (XPS) measurements were performed using a Thermo VG Thermo Scientific Escalab 250 fitted with a monochromatized X-ray Al Ka (1486.8 eV) source. A 150 W X-ray spot of 500 μm diameter was used for survey scans. Charge neutralization was accomplished by low-energy electron flooding. All spectra were referenced to the C 1s peak at 284.8 eV. Thermogravimetric analysis (TGA) was performed under argon flow from 50 to 800 °C using a Netzsch ST449 thermogravimetric analyzer. N\textsubscript{2} adsorption–desorption measurements were carried out on an Omnisorp 100 CX gas adsorption analyzer from Coulter Co to determine the BET surface area. Every sample was degassed at 350 °C for 12 h under a pressure of 10-3 Pa or below. The calorimetric experiment was performed using a C-80 microcalorimeter produced by SETARAM (France) with a sensitivity of 0.10 mW.

RESULTS AND DISCUSSION

Structural Analysis. The structures of the samples synthesized by varying the contents of EDA were investigated by using XRD as shown in Figure 1, in which a cubic spinel structure was synthesized and no impurity peaks were observed. The lattice parameter, cell volume, and crystallite size were determined by indexing the XRD patterns, and they are listed in Table 1, where the crystallite size was calculated on the basis of the Debye–Scherrer formula for the strongest (311) diffraction peak. It can be seen from Table 1 that the increasing EDA concentration induced the lattice parameter to increase for E5, E8, E15, and E20 and that the crystallite size increased for E5, E8, E10, and E15. When the molar ratio of EDA to the metal cations was further increased from 15 to 20 for samples E15 and E20, the crystallite size decreased from 18.7 to 18.2 nm. The molar ratios of Zn to Fe determined by ICP-AES for these samples are listed in Table 2. These results demonstrated that the Zn-doped Fe\textsubscript{3}O\textsubscript{4} spinel structure was synthesized under the present conditions, and the Zn content was decreased with the EDA increasing from 5 to 15 (molar ratio of EDA to the metal ions) and became higher with EDA further increasing from 15 to 20.

Fourier transform infrared (FTIR) analysis was performed to identify the structure and the functional groups of the samples as shown in Figure 2. The bands around 3414 and 1621 cm-1 were attributed to the O–H stretching vibration and the O–H bending vibration, probably due to the surface water molecules. The bands around 433 and 575 cm-1 were...
attributed to the Zn–O vibration and the Fe–O bond vibration, respectively.19,20 No characteristic peaks of EDA were observed in the spectrum, which indicates the absence of EDA on the surface of the as-prepared samples, which is demonstrated in the following analysis.

The morphology and size of the samples were analyzed through typical TEM images as shown in Figure 3. When no EDA was used, cluster-shaped samples were synthesized with the same method.15–17 However, no cluster can be seen in Figure 3, which demonstrates that EDA modified the morphology of the sample. Irregular nanoparticles and nanosheets can be seen in Figure 3 for samples E5, E8, and E10, in which the size of the nanoparticles was about 10–20 nm and the length, width, and thickness of these nanosheets were about 20–50, 8–10, and 3–4 nm, respectively. Sample E15 consisted of a large quantity of nanosheets of about the same size as samples E5, E8, and E10. Nanosheets can be seen only for E20 in Figure 3, in which the width of the nanosheets increased to about 30 nm. These results indicate that EDA induced nanosheet formation. Typical HRTEM images of these samples are also shown in Figure 3. The (111) facet with 0.50 nm as the distance between two adjacent planes can be seen clearly for the nanosheets, which indicated that the nanosheet grew along the [111] direction. The selected area diffraction (SAED) pattern of E15 is shown in Figure 4A, which reveals the crystalline nature of ferrite samples, and the diffraction rings are in good consistency with the hkl planes present in the cubic spinel structure obtained from XRD. To analyze the purity and elemental composition of E15, energy-dispersive X-ray spectroscopy (EDS) was employed as shown in Figure 4B, which clearly depicts that the as-synthesized sample was free from any kind of elemental impurity.

Formation Mechanism. Many metallic cations can coordinate with EDA to form stable complexes.19 Compared to the free cations as reactants, the reaction mechanism may be changed when these complexes are used as reactants. In the present study, E15 was selected to study the formation mechanism by in situ microcalorimetry. A typical microcalorimetric curve is shown in Figure 5. Compared to the microcalorimetric curve without EDA as reported in our previous work,21 significant differences can be found. Stronger peaks corresponding to the Fe$_2$(C$_2$H$_4$O$_2$)$_3$, ZnC$_2$H$_4$O$_2$, NaNO$_3$, and gel formations were found from room temperature to 150 °C without EDA.21 Weaker peaks were found only from room temperature to 200 °C in the present system, where the NaNO$_3$ was synthesized at 159 °C as analyzed below, and the
content of Fe$_2$(C$_2$H$_4$O$_2$)$_3$ and ZnC$_2$H$_4$O$_2$ was only about 0.5 wt % as determined by TG as shown in Supporting Information S1. Compared to 13 wt % of the content of Fe$_2$(C$_2$H$_4$O$_2$)$_3$ and ZnC$_2$H$_4$O$_2$ without EDA, the addition of EDA prevented Fe$_2$(C$_2$H$_4$O$_2$)$_3$ and ZnC$_2$H$_4$O$_2$ formation. No gel was found in the present system. These differences indicate that EDA changed the formation mechanism of the Zn-doped ferrite. To further study the formation mechanism, seven samples were selected corresponding to crests and troughs of these peaks as shown in Figure 5. Different samples were named T76, T107, T159, T200$_{3.5}$, T200$_{8.2}$, and T200$_{9.0}$, where 76, 107, 159, and 200 represent the experimental temperatures and subscripts 3.5, 8.2, and 9.0 represent the time (h) kept at 200 °C. No precipitate was found for T76 and T107.

XRD patterns of the solid samples obtained at different reaction temperatures are shown in Figure 6, in which all diffraction peaks of sample T159 were indexed to NaNO$_3$ (ICDD no. 36-1474). The diffraction peaks of samples T200$_{3.5}$ and T200$_{8.2}$ were indexed to α-(Fe, Zn)OOH and α-Fe$_2$O$_3$ (ICDD no. 65-0390), and no NaN$_3$ was found, which was in agreement with the TG results. The diffraction peaks of sample T200$_{9.0}$ were indexed to Fe$_3$O$_4$ (ICDD no. 28-0491) and/or ZnFe$_2$O$_4$ (ICDD no. 22-1012). The molar ratios of Fe to Zn were determined by ICP–AES to be 32.8, 502.6, 128.8, and 34.7 for T159, T200$_{3.5}$, T200$_{8.2}$, and T200$_{9.0}$, respectively. These results indicate that in addition of the NaN$_3$ crystals, the solid sample consisted of a small amount of amorphous alkoxides (Fe$_2$(C$_2$H$_4$O$_2$)$_3$ and ZnC$_2$H$_4$O$_2$ (about 0.5 wt % based on TG) for T159. α-FeOOH and α-Fe$_2$O$_3$ and a small amount of α-Zn$_3$(OOH)$_2$ were synthesized for T200$_{3.5}$. The α-Zn$_3$(OOH)$_2$ content increased as the experimental time increased from 3.5 to 8.2 h, in which the molar ratio of Fe to Zn decreased from 502.6 to 128.8. When the experimental time further increased from 8.2 to 9.0 h at 200 °C, a spinel structure was found and the Zn content was significantly increased, which demonstrated that Zn-doped Fe$_3$O$_4$ was synthesized.

Fourier transform infrared (FT-IR) analysis was performed to identify the structure and the functional groups of the samples as shown in Figure 7. The bands around 3345 and 1661 cm$^{-1}$ were attributed to the O–H stretching vibration and the O–H bending vibration. The bands around 424 and 536 cm$^{-1}$ were attributed to the Zn–O vibration and Fe–O bond vibration, respectively. For samples T159, T200$_{3.5}$, and T200$_{8.2}$, the two bands around 2871 and 2934 cm$^{-1}$ were attributed to the CH$_2$-symmetrical stretching vibration and asymmetrical
stretching vibration, respectively. The bands at 1086 and 1130 cm\(^{-1}\) are assigned to the C–N stretching vibrations, and the bands around 1382 and 1535 cm\(^{-1}\) were attributed to the asymmetric stretching vibrations of the C–H bond vibration and N–H bond vibration, respectively.\(^{22}\) No band corresponding to EDA was found for T2009.0 in Figure 7, which indicated that no EDA was contained in the Zn-doped ferrite based on the XRD.

XPS survey spectra of T159 and T2003.5 are shown in Figure 8. Peak values at 1072, 1046.7, 1023.4, 726.1, 712.1, 533.4, 408.4, and 285.2 eV can be indexed to binding energies of Na 1s, Zn 2p\(_{1/2}\), Zn 2p\(_{3/2}\), Fe 2p\(_{1/2}\), Fe 2p\(_{3/2}\), O 1s, N 1s, and C 1s, respectively, which confirmed the existence of Na, Zn, Fe, O, N, and C elements in the samples. Na 1s was found for T2003.5, and no NaNO\(_3\) was determined by XRD, which indicated a small amount NaNO\(_3\) may be absorbed at the T2003.5 surface. Fe\(^{2+}\) was determined for T2003.5. The details of the XPS analysis are listed in the Supporting Information as Figures S2–S4.

On the basis of the results listed above, a mechanism for Zn-doped Fe\(_3\)O\(_4\) formation was proposed. In the beginning, the complex cations were formed as follows:

\[
\text{Fe}^{3+} + 3\text{EDA} \rightarrow [\text{Fe(EDA)}]^{3+} \quad (1)
\]

\[
\text{Zn}^{2+} + 3\text{EDA} \rightarrow [\text{Zn(EDA)}]^{2+} \quad (2)
\]

Compared to Fe\(^{3+}\) and Zn\(^{2+}\) free ions, [Fe(EDA)]\(^{3+}\) and [Zn(EDA)]\(^{2+}\) formation prevented Fe\(_2\)(C\(_2\)H\(_4\)O\(_2\))\(_3\) and ZnC\(_2\)H\(_4\)O\(_2\) synthesis. When the experimental temperature increased to 159 °C, NaNO\(_3\) crystals and small amounts of Fe\(_2\)(C\(_2\)H\(_4\)O\(_2\))\(_3\) and ZnC\(_2\)H\(_4\)O\(_2\) were synthesized.

\[
\text{Na}^+ + \text{NO}_3^- \rightarrow \text{NaNO}_3 \quad (3)
\]

When Zn-doped Fe\(_3\)O\(_4\) was synthesized without EDA,\(^{21}\) NaNO\(_3\) crystals were synthesized at about 99 °C. And the amounts of Fe\(_2\)(C\(_2\)H\(_4\)O\(_2\))\(_3\) and ZnC\(_2\)H\(_4\)O\(_2\) were significant higher than those fabricated in the present system. The reason may be that the complex cation formation decreased the free Fe\(^{3+}\) and Zn\(^{2+}\) concentrations. As a chelating agent, EDA influenced the growth of particles under the hydrothermal reaction.\(^{22}\) The free Fe\(^{3+}\) and Zn\(^{2+}\) concentrations dissociated from the complex cations increased as the experimental temperature increased. Small amounts of Fe\(_2\)(C\(_2\)H\(_4\)O\(_2\))\(_3\) and ZnC\(_2\)H\(_4\)O\(_2\) were synthesized as the temperature increased to 159 °C.

\[
2\text{Fe}^{3+} + \text{Zn}^{2+} + 4\text{C}_2\text{H}_4\text{O}_2 \rightarrow \text{Fe}_2(\text{C}_2\text{H}_4\text{O}_2)_3 + \text{ZnC}_2\text{H}_4\text{O}_2 + 8\text{H}^+ \quad (4)
\]

At the same time, the following reaction occurred.

\[
\text{H}^+ + \text{CH}_3\text{COO}^- \rightarrow \text{CH}_3\text{COOH} \quad (5)
\]

Thus, NaNO\(_3\) crystals were formed through the electrostatic interaction between Na\(^+\) and NO\(_3^-\).

As the experimental temperature increased to 200 °C, the hydrolysis of CH\(_3\)COO\(^-\) and EDA occurred, and OH\(^-\) was released. \(\alpha\)-(Fe,Zn)OOH and \(\alpha\)-Fe\(_2\)O\(_3\) were synthesized through the reaction between Fe\(^{3+}\) and Zn\(^{2+}\) with OH\(^-\) as the following, in which eq 7 induced the Zn content decrease. Compared to the reaction at 200 °C, \(\alpha\)-(Fe,Zn)OOH and \(\alpha\)-Fe\(_2\)O\(_3\) were fabricated at 159 °C without EDA.\(^{21}\)

\[
[\text{Fe(EDA)}]^{3+} + [\text{Zn(EDA)}]^{2+} + 3\text{OH}^- \rightarrow \alpha-(\text{Fe, Zn})\text{OOH} + \text{H}_2\text{O} + 6\text{EDA} \quad (6)
\]

\[
2\alpha-(\text{Fe, Zn})\text{OOH} + 6\text{EDA} \rightarrow \alpha\text{-Fe}_2\text{O}_3 + 2[\text{Zn(EDA)}]^{3+} + \text{H}_2\text{O} \quad (7)
\]
At the same time, Fe$^{2+}$ was found at 200 °C for 3.5 h through eq 8, which was formed at 159 °C without EDA. Zn-doped Fe$_3$O$_4$ crystals were determined at 200 °C for about 9 h, and the Zn content was increased as the experimental time increased according to eq 9.

$$\text{HOCH}_2\text{CH}_2\text{OH} + 6\alpha\text{-Fe}_2\text{O}_3 \rightarrow 4\text{Fe}_3\text{O}_4 + \text{OHCCHO} + 2\text{H}_2\text{O} \tag{8}$$

$$\text{Fe}_3\text{O}_4 + [\text{Zn(EDA)}]^{2+} \rightarrow \text{ZnFe}_2\text{O}_4 + [\text{Fe(EDA)}]^{2+} \tag{9}$$

Typical TEM images of the samples are shown in Figure 9. For sample T159, nanoparticles were found and amorphous morphology was seen, in which NaNO$_3$ crystals and small amounts of amorphous Fe$_3$C$_2$H$_4$O$_2$ and ZnC$_2$H$_4$O$_2$ were fabricated on the basis of the analysis above. Nanosheets and cube-shaped structures were observed for samples T200$_{3.5}$ and T200$_{8.2}$, in which α-(Fe,Zn)OOH and α-Fe$_2$O$_3$ were synthesized. When the experimental time increased from 8.2 to 9.0 h at 200 °C, nanosheets and nanoparticles were found in which Zn-doped Fe$_3$O$_4$ crystals were synthesized. When the experimental time further increased to 24 h, almost pure nanosheets were fabricated as shown in Figure 3.

Magnetic Property. The magnetic hysteresis loops of the synthesized samples were measured at room temperature by using a VSM under a maximum applied field from -10 to 10 kOe as shown in Figure 10. The saturation magnetization (M_s), remanent magnetizations (M_r), and coercivities (H_c) are listed in Table 2, and the maximum M_s value is 119 emu/g for E15, which is higher than the reported 80.93 emu/g for E15, which is in direct proportion to the molar ratios of Fe$_{2+}$ to Fe$_{3+}$ in the samples were calculated on the basis of the molar ratio of Zn to Fe as determined by ICP-AES and the chemical composition of Zn-doped Fe$_3$O$_4$ as Zn$_x$Fe$_{2-x}$O$_4$, which are listed in Table 2. The result as listed in Table 2 demonstrated that the molar ratio of Zn to Fe was affected by the addition of EDA. The saturation magnetization increased from 64.7 to 119 emu/g for E5 to E15, which is in direct proportion to the molar ratios of Fe to Zn and Fe$_{2+}$ to Fe$_{3+}$. Zn$_{2+}$ ions, which are nonmagnetic in nature, occupied tetrahedral sites (as A sites), and Fe$_{3+}$ ions resided in octahedral sites (as B sites), which
weakened the A–O–B interaction because of the dilution of spin moments and induced the saturation magnetization decrease. However, E20 obviously does not follow this change. To study this change, XPS spectra were determined for samples E10, E15, and E20 as shown in Figure 11. The analysis for XPS is listed in the Supporting Information as Figures S5–S7. From the XPS data, the occupation formula for samples E10, E15, and E20 are the following:

\[
\begin{align*}
\text{E10} & : (\text{Zn}^{2+}_{0.104}\text{Fe}^{3+}_{0.896})_{\text{A}}[\text{Fe}^{2+}_{0.896}\text{Fe}^{3+}_{1.104}]_{\text{B}}\text{O}_4, \\
\text{E15} & : (\text{Zn}^{2+}_{0.068}\text{Fe}^{3+}_{0.932})_{\text{A}}[\text{Fe}^{2+}_{0.932}\text{Fe}^{3+}_{1.068}]_{\text{B}}\text{O}_4, \\
\text{E20} & : (\text{Zn}^{2+}_{0.050}\text{Fe}^{3+}_{0.950})_{\text{A}}[\text{Zn}^{2+}_{0.032}\text{Fe}^{2+}_{0.918}\text{Fe}^{3+}_{1.050}]_{\text{B}}\text{O}_4,
\end{align*}
\]

For sample E20, Zn\(^{2+}\) ions partially substitute for Fe\(^{3+}\) ions at B sites, which reduced the magnetic moment of B sites and resulted in the net magnetic moment decrease. The molar ratio of Fe\(^{2+}\) to Fe\(^{3+}\) at the surface of the samples was calculated on the basis of XPS and is listed in Table S1, which is higher than those representing the composition of the sample based on the ICP-AES as listed in Table 2. Octahedral sites are preferentially exposed on the spinel surfaces.\(^{25}\)

The temperature dependency of the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations of samples E15 and E20 is shown in Figure 12. The magnetization increases in ZFC curves with the temperature increasing up to a certain value, which is called the blocking temperature (\(T_B\)). The plots of ZFC–FC magnetization show thermomagnetic irreversibility (divergence between FC and ZFC magnetization). This is the property of all magnetic systems exhibiting magnetic hysteresis behavior. The temperature at which the ZFC and FC curves begin to separate (\(T_{irr}\)) corresponds to the blocking or unblocking temperature of the largest particles. \(T_B\) and \(T_{irr}\) values are listed in Table 3, where \(T_{irr}\) represents the blocking temperature of particles with the highest energy barrier and \(T_B\) gives the average value of the blocking temperatures of all of the particles. The result shows thermomagnetic irreversibility (\(M_{FC} > M_{ZFC}\)) below a certain temperature \(T_{irr} (\sim 300 \text{ K})\), which reveals that the systems are in a blocked state for all temperatures below the mentioned one.\(^{26}\) The difference between \(T_B\) and \(T_{irr}\) corresponds to the width of the blocking temperature distributions, and it also gives information regarding the grain size distributions in the samples.\(^{27}\)

The zero-field \(^{57}\)Fe Mössbauer spectra recorded at room temperature are shown in Figure 13 for samples E15 and E20. The computed hyperfine parameters are listed in Table 4. It can be found that the spectra exhibit a superposition of two Zeeman sextets for samples E15 and E20. The spectrum of compounds with the spinel structure is fitted using two sextets denoted as A and B sites, in which the fractions of iron ions are directly determined by the relative area ratios of the subspectra of corresponding A and B, respectively.\(^{28}\) The outer sextet corresponding to a higher magnetic field (\(H_A\)) is attributed to Fe\(^{3+}\) at the A site, and the inner sextet corresponding to the lower magnetic field (\(H_B\)) is from Fe\(^{3+}\) and Fe\(^{2+}\) ions at the B site. The molar ratios of Fe\(^{3+}\) at the A site to B site were calculated to be about 0.67 and 0.78 for E15 and E20, respectively, which were about 0.81 and 0.85 by XPS.

The N\(_2\) adsorption–desorption isotherms for samples E5–E20 are shown in Figure 14. The isotherm is of type IV and
displays the H3 hysteresis loop. According to the BET analysis, the BET surface area is shown in Table 5. The BET surface area of sample E15 was 80.6 m²/g, which has a higher surface area than some samples with surface areas of 28,29 25.94,30 and 74 m²/g.31 A large surface area can be obtained with dispersed nanoparticles.32

CONCLUSIONS

Zn-doped Fe₃O₄ magnetic nanosheets with a high magnetization and a large surface area were synthesized by a facile one-step solvothermal method. The Zn-doped Fe₃O₄ magnetic nanosheet formation mechanism was studied in detail using an in situ calorimetric method. Complex formation of [Fe-(EDA)₃]³⁺ and [Zn(EDA)₂]²⁺ deceased the free Fe³⁺ and Zn²⁺ concentrations, which prevented some reactions and induced some reactions to occur at higher temperature. At the same time, the (111) facets of Zn-doped Fe₃O₄ became stable, which induced nanosheet formation. These results demonstrated that EDA can change the sample formation mechanism. The Zn-doped Fe₃O₄ nanosheets with a large saturation magnetization and a high surface area show potential applications in different fields such as adsorption, biomolecular separations, and targeted drug delivery.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b02084.

TG/DTG curves of the samples under N₂, Fe₂ p₃/2 and Fe 2p₁/2 XPS spectra, O 1s XPS spectra, Zn 2p XPS spectra, and results obtained from XPS spectra and composition at the A and B sites (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: zdnan@yzu.edu.cn. Tel: +86-514-87959896. Fax: +86-514-87959896.

ORCID

Zhaodong Nan: 0000-0001-8890-6795

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Nature Science Foundations of China (21673204 and 21273196) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES

Fe3O4 Nanoparticles Estimated in Terms of Crystal Domain Size.

Liu, J.; Nan, Z.; Gao, S. In Situ Microcalorimetry Study of ZnFe2O4 Nanoparticle Formation under Solvothermal Conditions. Dalton T. 2015, 44, 17293.