Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells

Ligang Fenga,∗,1, Jinfa Changb,1, Kun Jiangc, Huaiguo Xuea, Changpeng Liua, Wen-Bin Caic,∗, Wei Xingb,∗, Jiujun Zhangd

a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
b State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
c Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
d Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China

\textbf{ARTICLE INFO}

\textbf{ABSTRACT}

Nanostructured palladium is considered as the best catalyst materials for direct formic acid fuel cells but catalyst poisoning suffering from the intermediates seriously reduces catalytic activity and stability, thus further hinders the commercial application of fuel cells technology. Herein, we report the tricky Pd catalyst poisoning problem could be greatly depressed by cobalt phosphide (CoP) material during formic acid oxidation, so an extremely active and stable Pd catalyst with very low Pd loading (5 wt%) is realized. The high anti-poisoning ability was evidenced by a significantly faster kinetics study and less poisoning intermediates adsorbed on its surface compared with Pd/C catalyst. When integrated into a real fuel cells model, a power density of 150 mW cm-2 catalyzed by this Pd-CoP/C catalyst (5 wt%, Pd) was comparable to that of the commercial Pd/C catalyst (20 wt%, Pd) indicating a very promising application in the electrochemical energy devices. This work opens an avenue to overcome the universal catalyst poisoning issue and pushes Pd catalyst system much stronger for commercial application in fuel cells technology.

\textbf{1. Introduction}

Using liquid formic acid (a promising hydrogen carrier) solution as fuel, direct formic acid fuel cells (DFAFCs) can effectively avoid the issues of hydrogen gas storage and transportation \cite{2,3,4,5,6}. When combined with the electrocatalytic reduction of CO\textsubscript{2} using wind or solar energy to produce formic acid, a sustainable energy cycle can be realized, which is very important for the balance of greenhouse gases \cite{6,7}. Normally, Pt or Pd noble metals are used to maintain high performance of DFAFCs, and it is recognized Pd has much higher anti-poisoning ability than Pt, thus lots of research by modifying or alloy with other materials have been done on Pd \cite{8,9,10,11,12,13}. However, the universal catalyst poisoning problem resulting from the accumulated poisoning intermediates is concomitant on all the newly developed Pd catalysts. The high noble metal loading as high as 20 wt% and the serious instability/dissolution of the current Pd catalysts have significantly hindered the commercialization of such kind of fuel cells technology \cite{14,15,16,17,18,19,20}. Thus, for the widespread commercialization, it is urgent to develop robust and efficient catalysts materials with low noble metal loading but high anti-poisoning ability.

Keeping that goal in mind, scientists have tried many strategies by combining transition metal or metal oxide with Pd to overcome the catalyst poisoning problem \cite{3,14}. Unfortunately, the instability of the promoter elements results in a rapid decay of catalytic performance. We have discovered that nickel phosphide is a robust catalytic promoter that greatly promotes the noble Pt or Pd catalyst activity in fuel cells \cite{21,22,23,24}, the impressive catalytic performance and the unknown promotion mechanism stimulate us to probe the new potential material in the phosphide family members. Fortunately, after trial and error, we found that cobalt phosphide (CoP) can greatly reduce Pd catalyst poisoning problem in direct formic acid fuel cells. Differing from previous work, the super stability and promotion effect explored by current advanced technologies were highlighted. A significant breakthrough was achieved that an extremely active and stable Pd catalyst with very low Pd loading (5 wt%) was realized for direct formic acid fuel cells. The higher anti-poisoning ability was evidenced.
by a significantly faster kinetics process and less poisoning intermediates adsorbed on its surface when compared with state-of-the-art commercial Pd catalyst. As a result, a power density of 150 mW cm$^{-2}$ achieved by Pd-CoP/C catalyst (5 wt%) was comparable to that of a commercial Pd/C catalyst (20 wt%, Pd), indicating very promising application in the electrochemical energy devices. This study establishes a novel protocol for extending the life-time of electrocatalyst subject to poisoning problem in fuel cells technology.

2. Results and discussion

The CoP/C was firstly synthesized by a solid phase reaction, where the cheap reagents of CoCl$_2$ and NaH$_2$PO$_2$ were employed. Pd was deposited onto CoP/C by a microwave assisted ethylene glycol reduction method. In order to track the optimal loading of CoP in the hybrid catalyst, a series of CoP loading from 10–50% in the Pd-CoP/C catalyst were prepared and characterized by different technologies (see the Supporting information for details). X-ray diffraction (XRD) technology was used to probe the crystal structure. An orthorhombic crystal structure of CoP on the carbon was observed in the typical XRD patterns; after Pd was deposited on the CoP/C surface, the typical face-centered cubic structure of Pd can be observed on all the samples (see Fig. S1 for details).

Take Pd-CoP/C-30% catalyst as an example, typical transmission electron microscopy (TEM) images of the catalyst and the background of CoP/C-30% support are shown in Fig. 1. For CoP/C support, besides the amorphous carbon, no obvious particles could be assigned to CoP in the low resolution TEM image (Fig. 1a); but they are visible on high resolution TEM images (HR-TEM) (Fig. 1b). When Pd was deposited on the surface, nanoparticles assigned to Pd can be seen clearly (Fig. 1c). For the HR-TEM image, a close contact of CoP and Pd was observed, and the lattice fringe of Pd and CoP could be seen by further magnification (Fig. 1d). The TEM images for other Pd catalyst are shown in Fig. S2. Similar particle sizes, shapes and size distributions

Fig. 1. (a) TEM (scale bar: 20 nm) and (b) HR-TEM (scale bar: 2 nm) images of CoP/C-30% sample. (c) TEM (scale bar: 20 nm) and (d) HR-TEM (scale bar: 5 nm) images of Pd-CoP/C-30% sample. (e) EDX, (f) STEM, (g–l) (scale bar: 200 nm) Elemental mapping images of the Pd-CoP/C-30% catalyst.
are observed, which excluded the morphology and/or particle size effect on the activity differences with different CoP loadings [25].

Energy-dispersive X-ray spectroscopy (EDX) and element mapping was done on a randomly selected area, and a typical result is shown in Fig. 1e–l. The elements of Pd, Co and P are clearly visible, and the content of Pd and Co is 4.98 wt% and 18.75 wt%, respectively, which agree well with the nominal contents. The composition of all catalyst materials was further probed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) technology, and the composition of all the samples agrees well with the nominal contents (Table S1a).

Before the electrochemical catalytic performance evaluation, physical stability tests on CoP/C (30%) in acid conditions was performed, which was kept soaking in 0.5 M H2SO4 for different times (i.e., 1 h, 6 h, 12 h and 24 h) and then the content of Co and P dissolved in the solution was detected with ICP-AES. The results (Table S1b) indicated CoP/C has a very nice chemical stability. It can be seen that even after 24 h, the dissolved Co and P were just ~0.09%, which can be negligible.

The as-prepared catalyst was drop-cast onto a glassy carbon electrode for electrochemical measurements. Typical Pd behaviors were observed on the commercial Pd/C-JM catalyst, while metallic state of Pd was mainly present in the home prepared Pd/C and Pd-CoP/C catalysts. The peak positions of metallic Pd [29] for Pd/C-H and Pd/C-JM locate at ca. 335.7 and 341.0 eV respectively for Pd 3d5/2 and 3d3/2.

Due to different physical properties of commercial and home-made catalysts resulting from different preparation methods, it is more valid to probe the electronic effect by comparing the two home-made catalysts. Important to note is that peak position of Pd-CoP catalyst shifted significantly, by about 0.7 eV, to lower binding energy when compared to Pd/C-JM catalyst as shows in Fig. 2c. Meanwhile, a definite peak shift of Co 2p from Co 2p to higher binding energy was observed compared with Co or P elements of CoP (Fig. 2d for Co 2p and Fig. S6 for P 2p). This shift is a sign of an interaction between CoP support and Pd nanoparticles resulting from a partial electron transfer from CoP to Pd surface. Similar shift was reported on several Pd
catalyst systems [24,30,31], and it is thought this electronic interaction between CoP and Pd is favor in the electrocatalysis [32,33].

The dynamic stability is also very important for real application, and it was studied in an accelerated stability test (AST) by recording 1000 CV cycles at 200 mV s\(^{-1}\). It can be observed that the current density was gradually reduced on Pd-CoP/C catalyst (Fig. 3a) probably due to slowly accumulating poisoning intermediates on Pd surface. While severely performance decay happened on the commercial and home-made Pd/C catalysts (Fig. 3b for commercial Pd/C and Fig. 3c for home-made Pd/C). The performance of Pd-CoP/C catalyst could be recovered by nearly 100% of its initial activity (1001st cycle) after electrode was rinsed by ultrapure water and replaced with new electrolyte. Unfortunately, there was almost no activity recovered on the commercial and home-made Pd/C catalyst (1001st cycle), probably due to the strong poisoning intermediates accumulated on the active sites. With respect to this, similar results were also reported on Pd catalyst in direct formic acid fuel cells [34]. The possible reason was the poisoning species weakly absorbed on the Pd surface can be removed by washing, thus the activity of Pd catalyst could be regenerated. However, there is almost no activity recovered on both commercial and home-made Pd/C catalyst probably due to the poisoning effect resulting from the strong poisoning intermediates.

The real fuel cells performance of the proposed Pd-CoP/C catalysts was successfully evaluated on a home-made fuel cells to demonstrate the potential application. The steady-state polarization and power-density curves were compared in Fig. 3d. Generally, Pd loading of 20 wt% is considered as the low limit content in order to maintain an acceptable performances. However, even a 5 wt% of Pd in our Pd-CoP/C catalyst can give a comparable performance (150 mW cm\(^{-2}\)) to those catalyzed by 20 wt% of Pd with the state-of-the-art commercial Pd/C catalyst. Meanwhile, a very high stable discharge ability was achieved on Pd-CoP/C catalyst indicating very promising application (Fig. S7), while a large performance decay occurred in the initial 1 h on the commercial Pd/C catalyst. The strong promotion effect of CoP can be further verified by comparing the fuel cells performance with Pd/C-H catalyst, where a huge performance gap was observed. Due to the very low loading of Pd in the Pd/C-H catalyst, the performance was severely affected by the mass transfer process. The lower the loading of Pd, the less the active sites available, the lower the fuel cells performances. It is evident that the performance improvement should come from the contribution of CoP in the catalyst system as the both home-made catalyst have the same Pd loading. The maximum power density of 500 mW cm\(^{-2}\) is achieved in the Pd-CoP/C catalyst, which is the highest performance for low temperature direct formic acid fuel cells at the current state of technology to our knowledge, and has never been reported in the literature. Specifically, its fuel cell performance is about 4 to 5 times as high as that of those catalyzed by other reference catalysts including the commercial Pd/C catalyst (see literature performance comparison in Table S4). The result is very significant as it can largely reduce the noble metal loading in fuel cells.

Kinetic studies then were done to probe the promotion mechanism. The typical dynamical behaviors of electrochemical impedance spectroscopy for all the evaluated catalysts at different potentials were compared and shown in Fig. S8. The charge transfer resistance at different potentials were fitting the impedance data (Fig. S9 and Table S5). It can be seen that the lowest charge transfer resistance is obtained in the Pd-CoP/C catalyst, which is the highest performance for low temperature direct formic acid fuel cells at the current state of technology to our knowledge, and has never been reported in the literature. Specifically, its fuel cell performance is about 4 to 5 times as high as that of those catalyzed by other reference catalysts including the commercial Pd/C catalyst (see literature performance comparison in Table S4). The result is very significant as it can largely reduce the noble metal loading in fuel cells.
recording the CVs at different scan rates and calculated to be ca. 1.99, 1.67 and 1.52 respectively for Pd-CoP/C, Pd/C-H and Pd/C-JM catalysts, if we assume that the charge transfer coefficient is 0.5 (Fig. S10 and see Supporting information for details). The nα is increased from 1.5 to 2.0 as one changes the catalysts from Pd/C-JM to Pd-CoP/C catalysts, that indicated formic acid electrooxidation on Pd-CoP/C takes place mainly via the direct path way which needs 2 electrons [35].

In order to further understand the promotion effect of CoP, we employed the advanced in situ electrochemical attenuated total reflection-infrared spectroscopic (EC-ATR-IR) technology to probe the poisoning intermediates during formic acid oxidation [36]. Fig. 4a and b shows the time-evolved ATR-IR spectra on Pd-CoP/C and Pd/C-H catalysts at 0.2 V (it was not done on Pd/C-JM catalyst due to different composition and optical signals). The major bands at 1720, 1400, and 1214 cm\(^{-1}\) can be ascribed to the νC=O, δCOH/δHCO, and νC=O vibrations of formic acid molecules, respectively. The 2345 cm\(^{-1}\) is attributed to the interfacial CO\(_2\), for which the peak intensity gradually decreased after 60 s due to its diffusion to the electrolyte.

For both catalysts, the low-coverage and multi-bonded CO (CO\(_2\)) appear as a shoulder peak at ca. 1790 cm\(^{-1}\) to the strong 1720 cm\(^{-1}\) band of interfacial formic acid. Nevertheless, on Pd/C-H surface, the CO\(_2\) band is relatively stronger than that on the Pd-CoP/C surface. It was also noted that a very weak peak at ca. 1840 cm\(^{-1}\) attributed to the bridge-bonded CO (CO\(_3\)) occurred on Pd/C-H at open circuit potential following the above measurement, a more clear indication is shown in Fig. 4c. In combination with the accelerated stability test in Fig. 2, we speculated that the gradual performance decay on Pd-CoP catalyst may result from the multi-bonded CO, and the highly depressed bridge-bonded CO might guarantee the excellent activity.

Finally an electrochemical stripping voltammetry technology proposed by Pickup et al. [37] was employed to probe CO intermediates amount adsorbed on the electrode surface. The electrode after 2 h of chronoamperometry measurements at 0.2 V was performed and then the electrode was transferred to an electrochemical cell containing 0.5 M H\(_2\)SO\(_4\) under the protection of nitrogen. A potential at 0.2 V (vs. SCE) was applied for 0.5 h to consume the residual formic acid, and cyclic voltammetry was then performed to probe the CO intermediates adsorbed on the electrode surface. In consistent with Pickup’s reports [37], typical CO stripping voltammogram features were observed in Fig. 4d; a large CO oxidation peak was seen on Pd/C-H and Pd/C-JM catalysts, but only a minor CO oxidation peak on the Pd-CoP/C catalysts. The charge associated with the oxidation of the adsorbed CO was 20.58, 90.07, 123.67 mC mg\(^{-1}\) respectively for Pd-CoP/C, Pd/C-H and Pd/C-JM catalyst. The less CO formed on catalyst surface, the higher CO anti-poisoning ability. Taken the above results together, it can be concluded that CoP can greatly increase the anti-CO poisoning ability.

It is generally accepted that the electrooxidation of formic acid can proceed through two parallel pathways, the direct pathway and the indirect pathway [38]. In the direct pathway, formic acid is directly oxidized to CO\(_2\) by 2 electrons reaction and no CO intermediate is formed. In the indirect pathway, formic acid is firstly oxidized to intermediate CO and then CO is oxidized to CO\(_2\) the reaction rate is significantly affected by the strongly chemisorbed CO. According our above kinetic analysis and electrochemical-optical study, we confirmed that CoP can promote formic acid oxidation over Pd catalyst mainly via the direct pathway, thus greatly reduces the Pd catalyst poisoning problem in direct formic acid fuel cells. CoP recently was reported as an effective water splitting catalyst in terms of hydrogen evolution and oxygen evolution [39–42], the water activation ability probably also benefits the electrode process. On the one hand, the facile hydrogen adsorption and transfer on the CoP surface might accelerate the formic acid oxidation in a way similar to the hydrogen spill-over effect [43]. On the other hand, CoP is speculated to active the water to form oxygen containing species (−OH\(_{ads}\)) that can oxidize CO and other poisoning intermediates adsorbed at adjacent Pd sites through the so-called bifunctional mechanism [44,45]. Thus, a relative low CO accumulation on the Pd-CoP/C catalyst was observed. According the relevant reports, a possible approach based on the well recognized bi-functional mechanism and hydrogen spill-over effect for formic acid oxidation was shown in Supporting information on Page S27. Hopefully the speculation could be answered by theory work soon. Moreover, the effect of different members in the phosphide family on the catalyst stability, activity and catalytic mechanism should be also probed in the subsequent work; it involves the different members of phosphide in different compositions, surface states, structures, morphology and so on [23,46–50]. The further contribution will be helpful in discovering the origin of catalytic promotion effect.
3. Conclusion

Successful preparation of a highly active and cost-effective anode catalyst for direct formic acid fuel cell is demonstrated. The Pd-CoP/C catalyst can be prepared easily from the cheap and earth-abundant elements which is suitable for large-scale fabrication. High fuel cell power density of 150 mW cm$^{-2}$ was achieved when using Pd-CoP/C catalyst containing only 5 wt% of Pd as anode catalyst, which is comparable to that of the commercial Pd/C catalyst containing 20 wt % Pd. Excellent catalytic activity and stability for formic acid oxidation are observed by electrochemical measurements, which is due to the action of CoP in the hybrid catalyst. It is found that CoP can largely depress the CO intermediates poisoning problem on Pd catalyst during formic acid electrooxidation, thus, higher catalytic activity and stability were observed. The present work opens an avenue to overcome the universal catalyst poisoning issue and make more practicable catalyst in fuel cells technology.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (21603041 and 21673203). It is also supported by Qinglan Project and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.nanoen.2016.10.023.

References

Prof. Huaiguo Xue received his Ph.D. degree in polymer chemistry and physics from Zhejiang University in 2002. He is currently a professor of physical chemistry and the dean of the College of Chemistry and Chemical Engineering at Yangzhou University. His research interests focus on electrochemistry, energy conversion and storage, functional polymers and biosensors.

Prof. Changpeng Liu received his Ph.D. in Physical Chemistry in 2002 and was appointed an associate professor in 2006 and professor in 2011 at CIAC. He has been in charge of and taken part in several relevant fuel cells projects (e.g. 863 programs and 973 programs China). Liu’s research focuses on the technology and performance of catalysts, electrodes MEA, stacks, water electrolysis and fuel cells.

Prof. Wen-Bin Cai obtained his Ph.D. degree at Department of Chemistry, Fudan University supervised by Prof. Wei-Fang Zhou. He then worked with Prof. Zhong-Qun Tian for two years as a postdoctor at State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University. After that, he joined Prof. Masatoshi Osawa’s group as a COE research fellow at Catalysis Research Centre of Hokkaido University until March 1999. From June 1999 to June 2002, he was a visiting scholar and research associate at Prof. Daniel Scherson’s lab, Case Western Reserve University. Since July 2002, he has been working at Fudan University as a professor. Cai’s main research interests cover spectroelectrochemistry and electrocatalysis with a recent focus on design of efficient Pd and Pt-based electrocatalysts for oxidations of small organic fuel molecules based on mechanistic understanding.

Prof. Wei Xing is currently a group leader and director of the Laboratory of Advanced Power Sources in CIAC. After receiving his Ph.D. in Physical Chemistry at CIAC in 1995, he worked as R&D researcher in CIAC and Hong Kong Productivity Council, respectively. He became a professor and group leader in CIAC since 2001 and devoted his work to the R&D research in proton exchange membrane fuel cell from fundamental electro-catalytic processes to relevant fuel cell assembly and applications. Currently, he also serves as vice director of Chinese Society of Electrochemistry (CSE) and is an active member of IES. He has published over 200 papers in peer-reviewed journals and was cited over 4000 times as well as possesses over 30 patents.

Prof. Jiujun Zhang is a Principle Research Officer and Technical Leader at the National Research Council of Canada’s Energy, Mining & Environment Portfolio (NRC-EME). Dr. Zhang is also the Adjunct Professor for 13 universities and research organizations including University of British Columbia, University of Waterloo, and Peking University. Up to now, Dr. Zhang has co-authored 350 publications including 220 refereed journal papers with approximately 10,000 citations, 12 edited/co-authored books, 11 conference proceeding papers, 24 book chapters, as well as 90 conference and invited oral presentations. He also holds over 10 US/EU/WO/JP/CA patents, 9 US patent publications, and produced in excess of eighty industrial technical reports.

Prof. Wei Xing